
THE GTNPHONE DIALOG SYSTEM
David Stallard, Joshua Bers, Christopher Barclay

BBN Technologies
70 Fawcett St.

Cambridge, MA 02238, USA

ABSTRACT
BBN’s GTNPhone is an over-the-telephone spoken language
dialog interface to GTN, a DOD logistics information website.
GTNPhone allows any user with a telephone, wired or cellular, to
call in and retrieve information from the GTN web-site using
voice only. No web browser or computer is required. The main
body of the system is implemented in Java, with native code
interfaces to commercial off-the-shelf components (such as a
speech synthesizer) implemented in C. It runs on a Solaris
workstation server located at BBN.

1. INTRODUCTION

BBN’s GTNPhone is an over-the-telephone spoken language
dialog interface to GTN [1], a DOD logistics information
website. GTNPhone allows any user with a telephone, wired or
cellular, to call in and retrieve information from the GTN web-
site using voice only. No web browser or computer is required.

The GTN website provides users with the Netscape web browser
access to large DOD databases that contain status information on
US military cargo shipments and transport mission itineraries all
over the world. Shipments are identified by a unique tracking
code called a TCN, which can be used to access a large variety of
information about the shipment, including its weight, volume,
current status, its past and present location, what transport
mission it is traveling on, etc. Part of an example GTN table is
shown below:

TCN Status Loc Time Date

FB483372190022XXX DEPART KDOV Act 0210 7234
FB483372190085XXX DEPART KDOV Act 0000 7234

Unfortunately, a user without a computer and screen is not able
to access this information, which presents problems for field
personnel who are equipped only with a telephone or other
voice-only communication device. The motivation for the
GTNPhone system is thus to allow wider access to this crucial
data, incorporating communication modalities such as the
telephone which are more available, mobile, and convenient for
personnel on the move.

An example session with GTNPhone is the following:

U: I want to check on TCN Charlie

S: Retrieving the cargo record from GTN… ok got it

S: TCN Charlie will arrive at Dover AFB at 1215 Zulu.

U: Where did it come from?

S: It is coming from Ramstein.

U: What time did it leave?

S: TCN Charlie left Ramstein at 0200 Zulu.

U: What plane was it on?

S: Tail number 50023.

A block diagram of the system is shown in Figure 1. At the
center of the system is the dialog controller, which orchestrates
the interaction of system components, using a network of dialog
states, which provide it with rules for what to do and/or say in a
given situation. The controller traverses this network in the
course of a dialogue with the user. An earlier form of this
architecture may be seen in [2]; other systems with some
similarity to this design are [3] and [4].

All voice input and output goes through the telephone, which is
connected to the serial port of the workstation. The speech
synthesizer (Entropics TrueTalk), and the speech recognizer
(BBN’s Hark system), are also connected to the serial port. When
a user calls the system, the dialog controller, in the initial
WELCOME dialogue state, commands the synthesizer to play an
initial prompt welcoming the user and asking him to say his
name. The controller then places the speech recognizer in
listening mode. When the user speaks, his speech goes through
the recognizer and is transcribed into text. The text is passed
through a language understanding component to produce a
meaning frame. This meaning frame is then passed to the query
formulator, which contacts the remote GTN website via HTTP to
fetch the answer. The answer is formulated in terms of another
meaning frame, which is passed to the Verbalizer component.
The Verbalizer converts the answer meaning frame into an
English text string, which is passed to the synthesizer and turned
into synthesized speech that is played out to the user as a
response. This completes the cycle, and the dialog controller
continues on to the next dialogue state, until the user says
“goodbye” or hangs up the phone.

In the rest of the paper, we go into more detail on each of these
components, with special attention to how they work together in
the complete operation of the system.

GTN Web
Server

Query
Formulator

HARK Language
Interpreter

Speech
Synthesizer

Telephone
SSL

Client

Language
Generator

Dialog
Controller

Text

Meaning
Frames

Speech

Speech

Text

Meaning
Frames

HTML

Figure 1: Block Diagram

2. CONTROLLING THE DIALOGUE

The complete network of dialog states in shown in Figure 2. The
system starts off in the initial state, labeled WELCOME in the
diagram, and asks the user for his name. If that is recognized as
one of the names the system knows about, the system then
proceeds to the VERIFIED state and from there to the PROMPT
QUERY state, where it asks “How can I help you?”. The user can
either ask about a TCN previously known to both user and
system (“What is the current status of TCN Charlie”), or he can
introduce a new TCN. In the first case, the system goes to
ANSWER QUERY, where it fetches the required data from
GTN, converts the answer into an English sentence (“TCN
Charlie arrived at Ramstein at 0800 Zulu yesterday”) and speaks
this to the user. In the second case, the user is led through a
process of reading in a new TCN one group of characters at a
time, which the system reads back to him to verify that it has
heard them correctly. Once the new TCN has been successfully
entered, the system gives the user a shorter tracking code (e.g.
“Charlie”, “Delta”, etc.) which can refer to the TCN in
subsequent sessions. The user can continue asking further
questions about the various TCNs in his purview, and the system
will continue traversing the state network accordingly until the
user says “Goodbye” or hangs up the phone.

The concept of dialog state in this work is similar to that of [2],
but is more detailed and grounded in object-oriented concepts.
The different dialog states of the network correspond to the
different types of situation that can arise in the course of the
dialog. For example, in the PROMPT NAME state the system is
prompting the user for his name and listening for his response,
while in the ANSWER QUERY state it is retrieving the answer
to his question from GTN and then speaking it to him. Dialog
states specify rules for what to do or say in that state, based on
what the user has said and/or what data the GTN application has
returned. They may also have various parameters whose values
are made use of by the rules, such as the meaning frame
representations of user and system utterances, etc. We have
found it natural to represent dialog states as classes in the Java
language, where the rules are the methods of the class and the
parameters are the instance variables.

There are two top-level subclasses of dialog state: prompt states
and action states. Prompt states, such as PROMPT NAME, are
those in which the system asks the user a question or otherwise
prompts him to say something, and then listens for and interprets
his answer, deciding what state to go to next based on it. Prompt
states have the methods constrainRecognizer, prompt,
dontUnderstand, and action.

Action states, such as ANSWER QUERY, are those in which the
system performs some action and then decides what state to go to
next. The system does not listen to the user at action states, but it
may speak to him, as it does in ANSWER QUERY. Action states
have only the method action.

The dialog controller maintains a pointer to the current dialog
state, and invokes the methods of the current state in a fixed
order. The last method invoked, action, returns a new dialog state
which the controller then makes the current one, operating in a
loop until the HANGUP state is reached.

 As an example, consider the state PROMPT QUERY. A large
variety of user responses are meaningful at this state, such as
“When will it arrive?” or “I need to check on a new TCN”, but
many others are not, such as the words “yes” or “no”, the user’s
name, etc. The state’s constrainRecognizer method specifies
which regions of the grammar are to be enabled, and which
disabled.

The dialog controller then invokes the prompt method of the
state, which at PROMPT QUERY returns the string “How can I
help you?” (and in subsequent invocations, “What now?”). The
controller takes care of passing this to the synthesizer, enabling
recognition, and calling the language interpreter. If the utterance
could not be recognized, or the language interpreter could not
interpret it, the system says “Sorry, I couldn’t understand that”
and re-listens.

Otherwise, the dialog controller first checks to see if the meaning
frame is one of the types that require special handling. If it is not,
it calls the state’s action method on the meaning frame.
PROMPT QUERY’s action method does not perform any side
effect, but instead just specifies the next state to go to based on
what the user said. If the meaning frame is of type NEW-TCN,
the next state is TCN PROMPT. Otherwise, the next state is
ANSWER QUERY.

If a meaning type requires special handling, it is dealt with by the
dialog controller, and the state’s action method is ignored. For
example, at any point in the dialogue the user can say
“Goodbye”. The proper state to go to handle this is CONFIRM
GOODBYE, but it would not be reasonable to expect the action
methods of each and every state to include branching logic for
this case. Instead, this meaning type is trapped in the dialog
controller, which then transfers to the appropriate new state.
Through this mechanism, the controller can create virtual links
between states without their having to be explicitly specified. A
spontaneous user hang-up is handled similarly.

The controller’s special handling is useful in another way.
GTNPhone allows the user to break out of a complex interaction
with the system, such as reading in a nine-character TCN, by
saying the word “abort”. The meaning frame of type ABORT that
results is intercepted by the controller, which then transfers to the
state PROMPT QUERY. This means the user is never trapped in
an interaction, and can always get back to a “home state”.

Figure 2: Dialog Network

Prompt
Name

Verified Prompt
Query

Welcome

TCN
Prompt

TCN
Comfirm

Answer
Query

Confirm
Goodbye Goodbye Hangup

3. SPOKEN LANGUAGE
UNDERSTANDING

Spoken language understanding in GTNPhone is divided into
three processing stages: speech recognition, sentence-level
language understanding, and reference resolution.

Speech recognition is performed by BBN’s Hark™ recognizer,
running in a server described in [5]. The recognizer uses a finite
state grammar embodying utterances in the GTN domain. The
grammar rules are annotated with labels associated with
syntactically and semantically distinct kinds of user utterances.
Examples include a person answering yes or no, giving his name,
asking a question, etc. Hark allows labeled grammar sections to
be turned on or off, controlling which types of utterances can be
recognized at a given time. GTNPhone uses this to increase
recognition accuracy in certain situations, as when the user is
responding to a system prompt (e.g. “Please say your name”).

The individual words of the grammar (“Ramstein”, “zero”) are
associated with tags that correspond to their referents in the GTN
system (“ETAR”, 0). The output of Hark is the complete set of
these tags and labels (plus additional labels on grammar rules
called regions). The sentence-level understanding component of
the language interpreter module takes the regions and tags and
produces from the recognition string a simple frame representing
the meaning of the utterance. Frames consist of a type and zero
or more role fillers. For example, the query:

USER: When will TCN Charlie arrive in Ramstein?

is represented as the meaning frame:

 (ARRIVAL
 datetime: ?
 location: RAMSTEIN
 equipment: CHARLIE)

The type of this frame is ARRIVAL, and it has fillers for the
roles DATETIME, LOCATION and EQUIPMENT. Fillers may
either be other frames, or terminal symbols denoting individual
entities (e.g. RAMSTEIN). The distinguished filler symbol “?”
indicates a question seeking the value of that role (here, the role
DATETIME).

The Hark recognizer includes a rejection capability. If the user’s
utterance is judged to lie outside the grammar, or if the language
interpreter cannot produce a meaning frame from Hark output,
the language interpreter returns a frame of a the distinguished
type DONT-UNDERSTAND.

The reference resolution sub-component is responsible for
resolving implicit references in a user’s query, by inferring them
from context. As an example, consider the following context:

USER: Where is TCN Charlie coming from?

SYS: It is coming from Ramstein.

which the user may follow up with:

USER: When did it leave there?

or even:

USER: When did it leave?

In both cases, the user’s complete meaning could be paraphrased
“When did TCN Charlie leave Ramstein?”. He makes use of
pronouns (“it” or “there”) or outright elision of elements (i.e.
omitting the location in the second follow-up) to shorten what he
has to say. As can be seen from this example, the antecedent of
the implicit element can be found in either what the user himself
said earlier (“it” = “TCN Charlie”) or what the system said
(“there” = “Ramstein”).

GTNPhone tries to infer the proper fillers of pronouns and
elisions by looking back at the history of the dialog. It uses a
simple strategy of looking back up the predecessor chain of
dialog states until it finds a referent of appropriate type. It then
substitutes that referent as the role filler. The output of reference
resolution is either a new meaning frame with all implicit
elements resolved, or error if one could not be.

The reference resolution component performs one more useful
service. When a user reads a new TCN into the system, the
system assigns it a new tracking one word tracking name from
the military alphabet (“alpha”, “charlie”, etc) and says it to the
user. The name-table is saved by the system on disk, separately
for each user. Thereafter, the user can refer to this new TCN by
this code, without laboriously reading it in again, and the
reference resolution component will match the name to the TCN,
even in subsequent sessions with the system.

4. INTERFACING TO GTN

The Query Formulator takes a fully resolved query meaning
frame and returns a new meaning frame that expresses the answer
to that query, contacting the GTN website as necessary to retrieve
needed information.

Retrieving data from the GTN website presents substantial
technical challenges not present in ordinary interfaces to
databases. There are multiple steps in the process. First, the
system mimics the browser HTML-form interface by computing
the correct CGI-encoded URL that will fetch the webpage for the
TCN in question. A GET command with this URL is then passed
to a Java HTTP client. The HTTP client then contacts the GTN
server across an SSL (Secure Sockets Layer) connection,
utilizing public key encryption. Once the page is fetched, it of
course comes back as just an HTML string, in which the table of
information for the TCN is encoded as a tab-formatted string
embedded inside HTML tags. This is then parsed into a table
data structure that implements basic JDBC functionality, from
which the various data fields of the TCN can be accessed by
attribute name. This table is cached in a hash array for the
duration of the session, so that other data fields can be fetched
from it as needed later in the session without accessing GTN
again.

A new meaning frame is generated from the query, usually by
substituting value obtained from GTN for the “?” symbols. It is
possible, however, to produce a meaning frame of a completely
different type instead, which is useful in some situations. For
example, a STATUS query (“What is the status of TCN Charlie”)
can be answered by three different types of meaning frames,
depending upon whether the item has arrived at, departed from,
or is on hand at a particular base.

5. LANGUAGE GENERATION
Language is generated by the Verbalizer module, which takes an
answer meaning frame as input and returns an English-language
string as output. From the frame, the Verbalizer generates a
clause whose main verb corresponds to the type of the frame and
whose subject, object and other modifiers are generated from the
role fillers of the frame. This process is driven by schemas
associated with the frame’s meaning type. These schemas specify
what the main verb should be, as well as which roles are to be
verbalized in which clause modifier positions.

For example, the meaning frame:

(ARRIVAL
 date-time: 11/12/97-1400
 location: ETAR
 equipment: CHARLIE)

is handled by a schema specific to the ARRIVAL meaning type:

<equipment>
 will arrive
at <location>
at <time>
on <date>

The tense of the clause is determined by comparing the date and
time roles of the event to the current date and time. This governs
what form the verb takes, e.g. “will arrive” vs. “arrived”.

The individual role fillers themselves are verbalized according to
separate schemas that are associated with the range type of the
role. For example, locations, which are represented as codes,
such as “ETAR”, in the GTN data table, are verbalized as their
full name form (“Ramstein Air Force Base”). These phrases plug
in to the appropriate modifier positions in the clause generation
schema.

The complete clause that would be produced by this example is
“TCN Charlie will arrive at Ramstein Air Force Base at 1400
Zulu on November 12”.

For the sake of concise and efficient communication, the
Verbalizer makes use of indexical references where appropriate.
For example, a date the same as the current date is verbalized as
“today”, whereas a date one day before the current one is
verbalized as “yesterday”, and so on. The system also uses days
of the week (e.g. “Wednesday”) if the date is within six days of
the current date (the tense of the clause is sufficient for the hearer
to discriminate between next Wednesday and last Wednesday).

6. SUMMARY AND STATUS

GTNPhone was demonstrated at the ALP (Advanced Logistics
Program) briefings at the DARPA TIE facility in Washington DC
on September 15, 1997. It was demonstrated again at various
sessions from September 24 to October 1, 1997 at US Transcom.
The last session was interactive and “hands-on,” where people
visited each station and could ask questions. GTNPhone
performed well in both the fixed demo situation and in the hands-
on sessions, and was very enthusiastically received.

In the near future, we plan to improve GTNPhone’s usefulness
by collecting data from potential users of the system. This will

guide the development of the system in two areas: first, in
determining what other types of information in GTN would be
useful to access from a telephone dialog system, and second,
what kind of language users are likely to employ in asking for
that information.

We also plan to replace the current language understanding
component, which is very simple and overly prescriptive, with a
more powerful statistical one for broader coverage. Additional
areas of future work include improved strategies for error
recovery and the improved use of discourse context in language
generation.

7. ACKNOWLEDGEMENTS

The work reported here was supported by the Defense Advanced
Research Projects Agency and was monitored by the Office of
Naval Research under Contract No. DABT63-94-C-0061. The
views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the United
States Government.

8. REFERENCES
[1] USTRANSCOM Global Transportation Network website.

https://www.gtn.transcom.mil/
[2] Stallard, D. “The Initial Implementation of the BBN ATIS4

Dialog System”. Proceedings of the Spoken Language
Systems Technology Workshop, January 1995. Austin, TX.
ARPA/SISTO

[3] Bratt, H., Dowding, D., and Hunicke-Smith, K. “The SRI
Telephone-based ATIS System”. Proceedings of the Spoken
Language Systems Technology Workshop, January 1995.
Austin, TX. ARPA/SISTO

[4] Seneff, S., Zue, V., Polifroni, J., Pao, C., Hetherington, L.,
Goddeau, D., and Glass, J. “The Preliminary Development
of a Displayless PEGASUS System”. Proceedings of the
Spoken Language Systems Technology Workshop, January
1995. Austin, TX. ARPA/SISTO

[5] Bers, J., Miller, S., Makhoul J. “Designing Conversational
Interfaces for Mobile Networked Computing”. In
Proceedings of the Workshop on Perceptual User
Interfaces. Banff, Alberta, Canada Oct 19-21, 1997.

